BLUFFER'S GUIDE

- 1. $H_2O \rightleftharpoons H^+ + OH^ K_w = [H^+][OH^-] = 10^{-14}$ $pH = -log[H^+]$ pH+pOH = 14 $[H+] = 10^{-pH}$ Convert between pH, pOH, $[H^+]$, & $[OH^-]$
- 2. Acid Ionization Constant (K_a):

HA + H₂O
$$\rightleftharpoons$$
 H₃O⁺ + A⁻
K_a = [A⁻][H₃O⁺]/[HA]
Example: HF + H₂O \rightleftharpoons H₃O⁺ +
K_a = [F⁻][H₃O⁺]/[HF]

 Typical question: Given K_a and the starting concentrations of acid, find concentrations (or pH) of [H⁺] at equilibrium.

F-

Example: K_a for acetic acid = 1.8 x 10⁻⁵. Find the pH of 0.100M acetic acid.

- 4. Polyprotic Acids: H_3PO_4 , H_2SO_4 , $H_2C_2O_4$, etc. The 1st dissociation is strong for H_2SO_4 . When using Hess's Law with a polyprotic acid: $K_{overall} = K_{a1} \times K_{a2}$ Calculating pH, use K_{a1}
- Bronsted-Lowry Definitions. Acids = H+ donors; Bases = H+ acceptors Conjugate acid-base pairs.
- 6. Base Ionization Constant (K_b):

$$B + H_2O \rightleftharpoons BH^+ + OH^-$$
$$K_b = [BH^+][OH^-]/[B]$$
Example: F⁻ + H_2O \rightleftharpoons HF + OH^-
$$K_b = [HF][OH^-]/[F^-]$$

- Salt solns can have pH's ≠ 7 (hydrolysis) ions from weak acids → basic solutions C₂H₃O₂⁻ + H₂O ⇒ HC₂H₃O₂ + OH⁻ ions from weak bases → acidic solutions NH₄⁺ + H₂O ⇒ NH₄OH + H⁺
- 8. $K_a \ge K_b = K_w = 10^{-14}$ only applies for **conjugate** acids & bases!

Example: $K_a HC_2H_3O_2 = 1.8 \times 10^{-5}$ $K_b C_2H_3O_2^- = 10^{-14} / 1.8 \times 10^{-5}$

- 9. Percent ionization = [H⁺]_{eqilibrium} /[HA]_{initial} x 100
- Acid Strength-know the 6 strong acids: HCl, HBr, HI, HNO₃, HClO₄, and H₂SO₄ (removal of the first H⁺ only)

(a) binary acids - acid strength increases with increasing size and electronegativity of the "other element". (NOTE: Size predominates over electronegativity in determining acid strength.) Examples: $H_2Te > H_2O$ & $HF > NH_3$

- (b) Oxoacids Acid strength increases with increasing:
- (1) electronegativity
- (2) number of bonded oxygen atoms
- (3) oxidation state of the "central atom".

Example: $HClO_4$ or $[O_3Cl(OH)]$

is very **acidic** NaOH is very **basic** Acid strength also increases with *decreasing* radii of the "central atom". Example: HOCl (bond between Cl and OH is covalent--making HOCl **acidic**) HOI (bond between I and OH is ionic--making HOI **basic**)

Lewis Acids and Bases: (*This applies to coordinate covalent bonds.*) Lewis Acid--electron pair acceptor Lewis Base--electron pair donor "Have Pair...Will Share" – Lewis Base

In complex ion formation, metal ions are Lewis acids, and ligands are Lewis bases. Example: $Cu^{2+} + 4NH_3 \rightleftharpoons Cu(NH_3)_4^{2+}$

 Cu^{2+} acts as an acid; NH₃ acts as a base.

12. Strong Bases: amide ion, NH₂⁻ hydride ion, H⁻, methoxide ion, CH₃O⁻

Based on a handout by William Bond, Snohomish HS